
Improve Offline Adaptation of General Video Game
Playing Agents

Margarita Naryzhnyaya
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, The Netherlands

Abstract—General Video Game Playing poses as problem the
creation of agents that are able to play and win unknown in
advance video games. They should adapt to the environment, and
use information from past experiences is crucial for them to act
accordingly. Adaptation and learning are two important aspects
of intelligence, therefore information about how agents perform
in certain game environment is an interesting point to consider.
Classification models can be trained on previously played games,
and used for adjusting the playing-agent’s parameters with
respect to its environment, defined by features of the games.

Index Terms—Games, General Video Game Playing, Monte
Carlo Tree Search, Machine Learning Classification

I. INTRODUCTION

Games have often provided practical and convenient test-
bed environments to evaluate work in Artificial Intelligence
(AI). For instance, contributions to planning [1] and navigation
[2] was made possible by testing algorithms in environments
of high and increasing complexity of games. Path-finding algo-
rithms were able to improve thanks to simulated and realistic
worlds offered by games. Some advancements of existing
algorithms resulted from variants of tree search algorithms,
such as the Monte Carlo Tree Search (MCTS) [3], as well as
variants of the A* algorithm [4].

General intelligence, along with social intelligence and cre-
ativity, has been identified as one of the most important long-
term goals of AI, and the domain of games has proposed very
effective strategies to fulfill these three goals [5]. Studying
General Game Playing (GGP) [6], which is about designing
agents that are able to play unknown games of a large variety,
is a core aspect of general AI since the focus is not narrowed
to a specific game. GGP agents cannot rely on algorithms
designed in advance for specific games, so the expertise
must depend on the intelligence of the game player itself.
Therefore, underlying technology can be used in a variety of
other application areas, for instance in business [7], military
simulations [8] and electronic commerce [9]. The idea of GGP
was extended to video games, forming the area of General
Video Game Playing (GVGP) [10]. Research work done in
this area enabled some advancement in other domains of AI:
in Machine Learning (ML) [11], neuro-evolution algorithms
[12], and natural language processing [13].

This thesis was prepared in partial fulfilment of the requirements for the
Degree of Bachelor of Science in Data Science and Artificial Intelligence,
Maastricht University. Supervisor(s): Matthew Stephenson, Dennis Soemers

In GGP, and GVGP, a hyperagent, or portfolio agent [14], is
an agent that can adjust its parameters, or sub-agents in some
cases, which modifies its behaviour, and therefore it influences
its performance. The purpose of this research is to investigate
how to use the agent’s environmental knowledge, i.e. certain
game features, to improve its game play-ability by adjusting
the parameters to the ideal values. Analysis of the MaastCTS2
[15] sub-agent’s performances is performed by the mean
of classification. A model is built to find some correlation
between features of games and the agent’s parameters. To
study how to improve MaastCTS2’s performance, taking into
account some characteristics of the games, three research
questions are posed:

1) How effective are the classification methods at predict-
ing which parameter values give the best performance?

2) How can we use classification methods to implement a
hyper-agent that selects good parameter configurations
for each new game?

3) What is the performance of such a hyper-agent when
used to play a wide variety of video games?

This thesis is structured as follows. Section II describes in
more depth the concept of GVGP, as well as some details
of the competition and the framework, with the MaastCTS2
agent. Next, in Section III, subsection III-A explains the details
about how the data can be gathered from the games, the
agent that is playing, and the outcome from the game-play.
Subsection III-B explains the details of the models used to
predict the parameters that the portfolio agent should have to
play unseen games. Afterwards, in Section IV, the outcomes
of the accuracy of the classification models, as well as the
performance of the adapted agents are presented. After the
discussion about the accuracy of the prediction models and
the performance of the agents in Section V, the thesis ends
with a conclusion (Section VI) about the prediction models,
and what can be enhanced in future work, in Section VII.

II. BACKGROUD

The General Game Playing Competition (GGP) [6] chal-
lenges the participants to create agents that can effectively play
a variety of previously unseen games, the majority of which
are variants of existing board games, or turn-based discrete
games. The General Video Game AI competition (GVGAI)
[16] was also created in order to test general agents, but this
time on video games.



A. GVGAI framework
The GVGAI framework [16] describes games via the Video

Game Description Language (VGDL) [17]. The description
of the entities, interactions, and termination requirements
constitutes the definition of the games. A valid agent to work
in this framework is the one that can select the moves in a
real times fashion. The framework does not provide all the
information to the agent, such as the rules of the game, the
behaviours of the sprite and the termination requirements. On
the other hand, the player can query its state, other sprites’
positions, the game status, possible moves, potential successor
states, and the history of events of collisions [16].

B. Agents
Variations of some algorithms implemented in different

hyper-agents were noticed to show best performance. In fact,
from the results of the GVGP competition, in 2014 [14],
the algorithms that performed among the best at playing
multiple games were those using MCTS algorithms, heuristics
or Hierarchical Open-Loop Optimistic Planning algorithm, as
well as some variants of those. It was also observed that
some agents performed better in some games, and other
agents in other games. Among them, the MaastCTS2 won the
competition for Single-Player track in 2016 [18]. Since this
thesis focuses on Single-Player games, this agent is suitable
for this research, on top of being competitive, open-source and
having many parameters that can be adjusted. This agent uses
Open Loop Monte-Carlo Tree Search [19]. Many combinations
of sub-agents can result from setting different parameters to
the MaastCTS2. Table I lists the parameters that are tuned,
and the different values that are considered, with the values
of the parameters that were set for the competition of 2016 in
bold.

TABLE I: MaastCTS2 parameters - Values of the parameters
set for the competition in 2016 in bold

Parameters Type Values
Selection strategy Categorical ProgressiveHistory(0.6, 1.0),

ProgressiveHistory(0.0, 1.0),
ProgressiveHistory(0.6, 0.5),
ProgressiveHistory(0.9, 1.0),
olUct(0.6),
olUct(0.9)

Payout strategy Categorical NstPlayout(10, 0.5, 7.0, 3),
NstPlayout(10, 0.5, 9.0, 3),
NstPlayout(7, 0.5, 9.0, 3)
Random(10.0), Random(6.0),
Random(7.0)
MAST(1.0, 0.5), MAST(7.0,
0.5)

Move selection strategy Categorical MaxAvgScore()
Playout evaluation Categorical GvgAiEvaluation()
initBreadthFirst Boolean true, false
noveltyBasedPruning Boolean true, false
exploreLosses Boolean true, false
knowledgeBasedEval Boolean true, false
treeReuse Boolean true, false
treeReuseGamma Double 0.6, 0.3, 0.8
maxNumSafetyChecks Integer 3, 5, 9
alwaysKB Boolean true, false
noTreeReuseBFTI Boolean true, false

III. METHODS

A. Data gathering

The process to gather the information about the games, and
the parameters of the agent that plays them, goes as follows:

1) At the start of one game that the agent will play (the five
levels of that game will be played five times) a .csv file is
initialised, having as name a string with the parameters
of the current agent. Each row stores information about
the game played by the agent. One column stores one
features of the game played, one other the name of the
game and one column stores the level.

2) A string is initialised at the beginning of each game with
the name of the game, the level that is being played and
the features of the game, more detail follow in Section
III-A1.

3) At the end of the game, the results are stored at the end
of this string. The results are made up of the victory
status of the player, the score and the time step.

4) For each game played, a new line is initialised and steps
2) and 3) are repeated.

5) When all the the levels of the game are played five times,
the .csv file is stored.

At the end, the number of files is the number of games played
by the agent, containing the results that the agent played. The
name for each file contains the name of the game played, and
a string storing the values of the parameters of the agent that
played the games. This enables to save memory space since
there is not one column for each parameter, these columns are
added later to avoid redundancy in the initial files. Later on,
the .csv files are imported in Python and are treated as data-
frame objects. All the .csv files are then concatenated into one
big data-frame to perform classification and predictions, with
new columns for each parameter.

1) Level Features: The GVGAI framework provides 122
games, each one has 5 levels. Feature extraction for each
of them happens at the very beginning of the one game
level: one part of the features are extracted from the State
Observation (given to the agent at the initial game state),
the object that provides the agent with information about the
game’s status, and the other part from the Game Description
object, which information are never given to the agent under
standard competition rules. The features from the latter object
are extracted for this thesis, even if under the competition
conditions they are not given to the agent. Table II lists all
the level features extracted. Afterwards, it is explained which
features are stored directly to the .csv file, and which are used
to make new columns to store the features shown in the Table
II later on in Python. The .csv files are read as data frames,
where the current features’ columns are computed from the
stored data. Among the information given to the agent, there
are:

• All the features in the group Total amount, except for the
nNPC and nInteractions.



(a) Pokemon level 2: start of the game (b) Pokemon level 2: middle of the game

(c) Sea quest level 2: 8 portals (d) Pong level 1: available actions are up and down

(e) Overload: level 1: 18 resources (f) Cook me pasta level 2: area of 500346.0

(g) Painter level 1:
area of 28800.0

Fig. 1: Games with visualisation of features



TABLE II: Selected game features

Group Feature Type Examples
Pokemon Cook Me Pasta Painter Sea Quest Pong Overload

Total amount

nNPC Integer 8 0 0 2 0 1
nImmovable Integer 41 66 8 189 96 303
nMovable Integer 0 4 0 0 2 0
nPortal Integer 0 0 0 5 0 0
nResource Integer 0 1 0 0 0 18
nAction Integer 5 4 4 5 2 5
nInteraction Integer 1 10 4 7 3 5

Map

area Double 318402.0 500346.0 28800.0 272916.0 370656.0 368676.0
horizontalRatio Double 0.143 0.5 0 0.476 0.136 0.895
verticalRatio Double 0.429 0.455 0 0.222 0.385 0.091
density Double 0.418 0.461 1 1.026 0.343 1.536

Actions

ACTION USE Boolean True False False True False True
ACTION UP Boolean True True True True True True
ACTION DOWN Boolean True True True True True True
ACTION RIGHT Boolean True True True True False True
ACTION LEFT Boolean True True True True False True

Win termination

winSpriteCounter Boolean True False True False True True
winTimeout Boolean False False False True False False
winMultiSpriteCounter Boolean False True False False False False
winMultiSpriteCounterSubTypes Boolean False False False False False False

Lose termination

loseSpriteCounter Boolean True False False True True True
loseTimeout Boolean True False False False False False
loseMultiSpriteCounter Boolean False True False False False False
loseSpriteCounterMore Boolean False False False False False False

• All the features in the group Map.
• All the booleans in the Actions group.

The State Observation object provides lists with the positions
of the Immovable, Movable, Portals and Resources sprites,
by type. The amounts for each type of Immovable, Movable,
Portals and Resources are stored into lists, for each type. As
mentioned earlier, the total amount of each is computed at
the end in Python: a new column for each type of sprite is
added to the data frame with the sum of the amounts. The
State Observation object also gives the width and the height
of the world, the 2D position of the avatar. The feature area
is computed by multiplying the width and the height. The
verticalRatio represents whether the avatar is closer to the top
or to the down part of the world map. When this value is
closer to zero, it means that the avatar’s position is close to the
upper side of the map, and when it is closer to one, the avatar’s
position is close to the bottom edge of the world map. The
horizontalRatio represents whether the avatar is closer to the
left or the right side of the map. Similarly to the verticalRatio,
when the horizontalRatio is closer to zero, the agent is closer
to the left edge of the map, while when it is closer to 1, the
agent is nearer to the right side. These ratios are computed at
the ’data cleaning’ step, so after all games have been played by
the agent, and two new columns are added in the data frame
with this formulae:

horizontalRatio = avatarPosition.x/width (1)
verticalRatio = avatarPosition.y/height (2)

The booleans in the Actions group are obtained first by storing
a list of all the possible actions the player can do when storing
the features of the games in the .csv file. Afterwards, a new
column for each action is added in the data frame in Python

for each of them and a value of 1 or 0 is assigned: 1 for the
case the action can be performed by the agent, 0 otherwise.

The features that are obtained from the Game Description
object are:

• In the group Total Amount, nNPC and nInteraction.
• The termination conditions for winning, all the booleans

in the Win termination group, and those for winning, all
the booleans in the Lose termination group.

The lists of the NPCs and interactions are extracted at the
starting of the games, in the .csv files. The nNPC and
nInteraction are obtained by storing the lengths of the lists
of NPCs and interactions respectively in the data frame in
Python by adding a new column for the nNPC and a new
column for the nInteractions. The Win terminations and Lose
terminations are the termination conditions. They are extracted
from the Game Description object as lists, and the process to
make them as booleans is the same as the one for the actions.
The terminations winSpriteCounter and loseSpriteCounter are
conditions to end the game when the amount of a certain sprite,
specified in the Game Description, reaches a certain value. For
example, a player can win if it reaches a certain amount of
sprites that are resources, or it loses when the amount of the
resources is below a specified number. The principle is the
same for winMultiSpriteCounter and loseMultiSpriteCounter,
but there can be different types of sprites. Regarding winMul-
tiSpriteCounterSubTypes, the game ends when the number of
sprites of a certain type is equal to a certain value, and the
number of different sub-types of the main type is equal to
another value. The termination conditions when winTimeOut
or loseTimeOut is true, means that the game ends if the game
time reaches a certain value.
The following list, with the corresponding figures, is used to



illustrate some features of games:

• The figure 1a shows the level four of the game ”Poke-
mon” from the framework. In this game there are 8 non-
playing characters (NPC) at the beginning of the game.
The figure 1b shows the same game but at a later point
in time. We can see that some of the NPCs can change
types throughout the game.

• ”Sea quest” (level two) is a game that has portals, in the
second level there are eight of them, as illustrates figure
1c. Note that for this game,

• ”Pong” is a game where the player can only make vertical
moves, so moving the paddle either up or down, it is
shown in the Figure 1d.

• In some games, the player can use resources and ”Over-
load” is one of them. In figure 1e, there are 18 resources,
among which one is the sword and 17 are the golden
squares.

• A comparison of a game having among the biggest areas,
which is ”Cook me pasta”, level two, and the game with
the smallest area, ”Painter” level four, are shown in figure
1f and 1g respectively.

2) Agents: As mentioned in Section II-B, there can re-
sult many sub-agents by choosing different parameter values.
The Move selection strategy, the Playout evaluation and the
boolean parameter initBreadthFirst are kept the same for all
the 133 agents. The sub-agents used for this thesis are shown
in Table XXI. The parameters present in Table XXI of the
MaastCTS2 agent are:

• A selection strategy which can either be Progressive His-
tory,or OlUct selection strategy, abbreviated respectively
as PH and O-L UCT in Table XXI. The former strategy
can take both parameters c, the exploration constant,
and w, the constant that determines the influence of
progressive bias. The second one is an open-loop UCT
selection strategy, that takes only one parameters: c.

• The Playout Strategy can either be the NST playout,
the MAST or Random playout. The NST playout is a
playout strategy that uses N-Gram selection technique. It
takes four parameters: maxPlayoutDepth, epsilon, min-
NGramVisitCount and maxNGramSize. Two parameters
are changed for the playout strategy: maxPlayoutDepth,
with the corresponding to the column Pl1, and min-
NGramVisitCount, with the corresponding column Pl3.
The NST playout takes all the parameters, the MAST
take as input the maxPlayoutDepth and epsilon, and the
Random playout only takes maxPlayoutDepth.

• Pl1 is the first parameter of the Playout strategy: the
maxPlayoutDepth, which is the maximum depth that the
playouts should reach.

• Pl3 is the parameter minNGramVisitCount that indicates
the minimum number of times that an n-gram must have
been visited for its statistics to be used.

• The columns B1, B2, B3, B4, B5, B6 give the
boolean values that the variables noveltyBasedSearch,
exploreLosses, knowledgeBasedEval, treeRreuse, al-

waysKB and noTreeReuseBFTI take respectively.
• The column treeRγ shows the double values that the

variable treeReuseGamma have for each agent.
• The values that the parameter maxNumSafetyChecks

takes are listed in the column mNSC. This parameter
defines the maximum number of states that are going to
be generated per action.

The victory status of the player, whether the player won, lost
or was disqualified, the score and the time step, of game that
the sub-agents played are stored in the .csv file in the same
row as all the features extracted from that games, as explained
in Section III-A1. Each sub-agent played the five levels of
the 122 games of the GVGAI Framework five times. In a
Python script, all the games played by all the 133 agents are
merged into one single data frame. One column for each agent
parameter is added to store the value that the parameter takes
for the corresponding agent which played the game.

B. Classification methods

Classification methods are used to predict which agent’s
parameter values would enable it to perform best. The features
for the classifiers are the features of the games listed in Section
III-A1, and the labels to predict are the parameters of the
hyper-agents, detailed in Section III-A2. There is one classifier
per label, i.e. per hyper-agent’s parameter. There is one model
to predict each features independently. The data obtained is
sampled to reduce computation time. This is necessary because
the final data frame with all games played by agents is
composed of 405 650 rows, since there are 133 agents that
played the 122 games with 5 levels five times. For this thesis,
the predictions are done with Python, using the Scikit-learn
machine learning library [20]. The models used are:

• A Dummy Classifier
• A Decision Tree Classifier
• A Random Forest Classifier
• A Multi-layer Perceptron Classifier
• A Logistic Regression Classifier

The Dummy Classifier is used to evaluate how well the more
complex classifiers are to predict the values. The scores of
this classifier is compared to the models’ best scores after
parameter tuning, and the models with their parameters having
default values. To get the scores of the models with default
parameter values, 10-fold validation is performed. Regarding
hyper-parameter tuning, the ‘GridSearchCV‘ method, from
the scikit-learn library [20], is used to tune the specified
parameters for each type of classifier, perform a 5-fold cross-
validation, and fit the model with the highest score on the
training data.

• Decision Tree classifier: two hyper-parameters for this
classifier are tuned: max depth and max leaf nodes.
The parameter max depth is tuned to take the values
in the interval from 1 to 13 included, with the space
between the elements being of 3: 1, 4, 7, 10, 13. The
max leaf nodes parameter takes the values between 5
and 100, evenly spaced by 20.



• Random Forest classifier: three hyper-parameters
are tuned: max depth, max leaf nodes and
n estimators. The two former are tuned in the
same way as for the Decision Tree Classifier, and the
n estimators parameter take the values between 1 and
21 included, evenly spaced by 5.

• Multi-layer Perceptron classifier: the only parameter ad-
justed for this classifier is max iter. It can take as values
the tuples (100) (one hidden layer), (50,50,50) (three
hidden layers), (50,100,50) (three hidden layers), (50, 50,
50, 50) (four hidden layers).

• Logistic Regression classifier: the two adjusted parame-
ters for this classifier are the solver and C. The solver
might either take as value sag, saga or lbfgs, and C is
tuned to take the values [1, 5, 10].

C. Agents’ performance

The sklearn-porter library [21] is used to transpile trained
classifiers in sklearn into other programming languages: in
Java, C, JavaScript, Go, PHP and Ruby. Since for this thesis
the GVGAI framework (written in Java) is used, the estima-
tors are transpiled into Java classes. After performing hyper-
parameter tuning for each agent’s parameter, the classifier
with the highest score for that parameter is transpiled into a
Java class file. The performance of the agent with parameters
chosen for the competition of 2014, and the agents which
parameters are chosen by the estimators, are compared by
making them play 20 games, listed in Table III. Among the 20
games, 10 games where the number of lost ones is the biggest
(and where the level chosen is 0) and 10 randomly chosen
games, with randomly chosen levels. Table III also shows in
parentheses the number of game that resulted in a loss.

TABLE III: Games to test performance

Randomly chosen With the most losses (num-
ber of lost games across all
levels)

bomber assemblyline (3314)
camelRace bird (3325)
chopper brainman (3317)
lasers chainreaction (3325)
mario digdug (3325)
overload fireman (3325)
pong lasers2 (3324)
run lemmings (3325)
surround vortex (3318)
thecitadel witnessprotected (3325)

IV. RESULTS

A. Classification models - hyper-parameter tuning

Table IV shows the mean of the predictions’ scores for
each model with default value parameters, and the Dummy
Classifier. Tables V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV,
XV, XVI, XVII and XVIII show for each agent’s parameter
the the parameters enable the classification methods to have
higher accuracy, as well as the maximum accuracy score for
that parameter.

TABLE V: Best models for Selection Strategy

Model type Best parameters score
DT max depth = 13,

max leaf nodes = 85
0.532444

RF max depth = 7,
max leaf nodes = 85,
n estimators = 11

0.533852

LG C = 1, solver = sag 0.515928
MLP hidden layer size =

(50, 100, 50)
0.516368

TABLE VI: Best models for parameter c

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.977911

RF max depth = 1,
max leaf nodes = 5,
n estimators = 1

0.977911

LG C = 1, solver = sag 0.977911
MLP hidden layer size =

(100)
0.977911

TABLE VII: Best models for parameter w

Model type Best parameters score
DT max depth = 10,

max leaf nodes = 85
0.527779

RF max depth = 13,
max leaf nodes = 25,
n estimators = 11

0.529129

LG C = 1, solver = sag 0.508302
MLP hidden layer size =

(50, 50, 50, 50)
0.508302

TABLE VIII: Best models for Playout Strategy

Model type Best parameters score
DT max depth = 7,

max leaf nodes = 25
0.339924

RF max depth = 4,
max leaf nodes = 45,
n estimators = 11

0.343678

LG C = 5, solver = sag 0.340569
MLP hidden layer size =

(50, 50, 50, 50)
0.338457

TABLE IX: Best models for parameter maxPlayoutDepth

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.539132

RF max depth = 4,
max leaf nodes = 65,
n estimators = 16

0.539689

LG C = 1, solver = sag 0.539132
MLP hidden layer size =

(50, 100, 50)
0.508506



TABLE IV: Accuracy of the classifier models without hyper-parameter tuning

Dummy Classifier Decision Tree Random Forest Multi-layer Perceptron Logistic regression
Labels
Selection Strategy 0.5889 0.5889 0.5901 0.55432 0.5889
c 0.9244 0.9241 0.92435 0.92438 0.9244
w 0.5512 0.5445 0.54502 0.5512 0.5512
Playout Strategy 0.5484 0.5455 0.5458 0.39538 0.5484
maxPlayoutDepth 0.9269 0.9268 0.9268 0.9268 0.9269
minNGramVisitCount 0.51 0.4375 0.45435 0.49850 0.5081
noveltyBasedPrunning 0.9612 0.961 0.9611 0.7767 0.9612
exploreLosses 0.7689 0.7698 0.7697 0.66132 0.7689
knowledgeBasedEval 0.9338 0.933 0.9333 0.7603 0.9338
treeReuse 0.9609 0.9605 0.9607 0.9609 0.9609
treerReuseGamma 0.9589 0.9588 0.9588 0.9589 0.9589
maxNumSafetyChecks 0.9196 0.9195 0.9195 0.743 0.9196
alwaysKB 0.8833 0.883 0.8832 0.8802 0.8833
noTreeReuseBFTI 0.961 0.9609 0.9609 0.961 0.961

TABLE X: Best models for parameter minNGramVisitCount

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.662628

RF max depth = 4,
max leaf nodes = 65,
n estimators = 1

0.662716

LG C = 1, solver = sag 0.662628
MLP hidden layer size =

(50, 50, 50)
0.662628

TABLE XI: Best models for boolean noveltyBasedPrunning

Model type Best parameters score
DT max depth = 4,

max leaf nodes = 5
0.914432

RF max depth = 10,
max leaf nodes = 45,
n estimators = 11

0.914432

LG C = 1, solver = sag 0.914403
MLP hidden layer size =

(50, 50, 50)
0.914403

TABLE XII: Best models for boolean exploreLosses

Model type Best parameters score
DT max depth = 13,

max leaf nodes = 25
0.883250

RF max depth = 13,
max leaf nodes = 85,
n estimators = 16

0.883837

LG C = 1, solver = sag 0.882957
MLP hidden layer size =

(50, 50, 50, 50)
0.882957

TABLE XIII: Best models for boolean knowledgeBasedEval

Model type Best parameters score
DT max depth = 7,

max leaf nodes = 25
0.920534

RF max depth = 13,
max leaf nodes = 85,
n estimators = 11

0.920563

LG C = 1, solver = sag 0.920211
MLP hidden layer size =

(50, 100, 50)
0.920211

TABLE XIV: Best models for boolean treeReuse

Model type Best parameters score
DT max depth = 10,

max leaf nodes = 45
0.913376

RF max depth = 13,
max leaf nodes = 65,
n estimators = 16

0.913376

LG C = 1, solver = sag 0.912848
MLP hidden layer size =

(50, 100, 50)
0.912848

TABLE XV: Best models for boolean treeReuseGamma

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.820974

RF max depth = 1,
max leaf nodes = 5,
n estimators = 1

0.820974

LG C = 1, solver = sag 0.820974
MLP hidden layer size =

(50, 50, 50)
0.820974

TABLE XVI: Best models for boolean maxNumSafetyChecks

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.813963

RF max depth = 1,
max leaf nodes = 5,
n estimators = 1

0.813963

LG C = 1, solver = sag 0.813963
MLP hidden layer size =

(50, 100, 50)
0.813963

TABLE XVII: Best models for boolean alwaysKB

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.90176

RF max depth = 1,
max leaf nodes = 5,
n estimators = 6

0.90176

LG C = 1, solver = sag 0.90176
MLP hidden layer size =

(50, 50, 50)
0.90176



TABLE XVIII: Best models for boolean noTreeReuseBFTI

Model type Best parameters score
DT max depth = 1,

max leaf nodes = 5
0.908976

RF max depth = 1,
max leaf nodes = 5,
n estimators = 1

0.908976

LG C = 1, solver = sag 0.908976
MLP hidden layer size =

(100)
0.908976

B. Agents’ performance

Tables XIX and XX shows the the performance of the
MaastCTS2 agent with competition parameters, and of the
agents which parameters where chosen by the trained estima-
tor. The victory status, the score, the time step are listed, as
well as the parameter(s) that are predicted to be different from
the MaastCTS2 agent used for the competition. Table XIX
shows the performances for the games that had the most losses,
and XX shows the performances of the agents for randomly
selected games. The victory status for one game can be 1
for a win, 0 for a loss, -100 when the agent is disqualified. In
both tables, the victory status is the sum of these results of the
games that were played five times. The scores are the mean of
the scores for that game played five times. It can be observed
in Table XIX that the victory status and the scores did not
change in most cases. For the games in Table XX, it can be
noticed that the agent was ”improved” by the classification
models in pong, mario, lasers (it didn’t win, any game but it
was not disqualified). The agent with competition parameters
did better in the game thecitadel. One observation that can be
made is that the change is score corresponds to the change
in the victory status, so if an agent won more games, it has a
higher score as in the games thecitadel and lasers for instance.
The table also shows that in the games where the ”improved”
agents won, or performed as well as the initial one, the time
steps are lower, not significantly however (except for the game
pong).

V. DISCUSSION

A. Classification models - hyper-parameter tuning

In Table IV, several observations can be made:
• For any parameter, the differences in scores is rather low

except for the parameters
• The results of the Dummy Classifierand the Logistic

Regression classifiers are the same when predicting any
parameter.

• The Decision Tree classifier is the one that predicted
better than the others only once.

• The Random Forest Classifier is the second could predict
better than the other models for two parameters.

• The MLP predicted better than the Decision Trees and the
Random Forest Classifiers, but not more than the Dummy
Classifier and the Logistic Regression Classifier. In some
cases, the accuracy scores for this classifier are signif-
icantly lower than the other classifier. For instance, the

accuracy for predicting maxNumSafetyChecks is around
0.17 lower than the accuracy of other models. Similar
observation can be made for the parameter knowledge-
BasedEval, exploreLosses, noveltyBasedEval, and the
Playout Strategy. We can conclude that the MLP classifier
without parameter tuning is not the most accurate for
these features, especially the boolean variables.

Regarding hyper-parameter tuning, models for some of
the agent’s parameters didn’t output more accurate results,
some even did worse: the models for the Selection Strat-
egy, the parameter w, the Playout Strategy, maxPlayout-
Depth (which difference is very big, the scores of the
models with tuned parameter are around 0.4 points lower
than the model with default parameters), noveltyBasedPrun-
ning, knowledgeBasedEval (except for the MLP classification
model), treeReuse, treeReuseGamma, maxNumSafetyChecks
and noTreeReuseBFTI. The parameters where the models
with adjusted parameters output more accurate results are
the parameter c, minNGramVisitCount, exploreLosses, and
alwaysKB. For the majority of the hyper-agent’s parameters,
the models which parameters were tuned performed worse
at predicting the right parameter values than the ones which
parameters were tuned. One hypothesis to explain this is that
the tuned parameters did not have the right values to be tuned,
or that other parameters of this models might have been useful
to tune to increase their accuracy.

B. Agents’ performance

The performance, the victory status, of the agents with
parameters adjusted by the models is not improved compared
the initial agent for the most lost games. However, from
the observations made in Section IV-B, the agents results
improved slightly in more games, the ones randomly chosen,
than they got worse. The difference in performance can be
said significant in games mario, lasers and pong, as discussed
in Section IV-B. Also, the average time steps needed to win
games also decreased, which can also be considered as an
improvement to the competition agent.

VI. CONCLUSION

The accuracy of the results did not improve after parameter
tuning, which might be cause by the fact that the parameters
tuned did not take the most ¿¿¿ values, or that some other
parameters of the models should have been tuned. To answer
the research question 1, the accuracy results of the models
without tuned parameter were better that the one of the MLP
classifier, and the four models with the specified parameter
values. For this thesis, classification methods were used to
improve the agent’s performance by specifying the values from
the trained models. These models were trained in Python using
the Scikit-learn library, and transpiled into Java classes that
were used to choose the values for the parameters of the agents
individually, this answers the research question 2. Regarding
research question 3, the classification methods enabled the
agents to win more games than the agent, and to win some



TABLE XIX: Performance of agents - games with higher number of lost

Game Victory Scores mean Time step Parameters chosen by
the model

Competition Predicted Competition Predicted Competition Predicted
assemblyline 0 0 6.6 6.4 1500.0 1500.0 RandomPlayout(10.0)
bird 0 0 0.0 0.0 141.0 141.0 O-L UCT(0.6), Random-

Playout(10.0)
brainman 0 0 11.0 11.0 2000.0 2000.0 RandomPlayout(10.0)
chainreaction 0 0 4.8 4.8 1500.0 1500.0 RandomPlayout(10.0)
digdug 0 0 15.4 6.0 1057.8 381.4 O-L UCT(0.6), Random-

Playout(10.0)
fireman 0 0 -11.4 -1.2 1371.8 1265.0 RandomPlayout(10.0)
lasers2 0 0 0.0 0.0 1834.0 888.0 RandomPlayout(10.0)
lemmings 0 0 -0.8 0.0 2000.0 2000.0 RandomPlayout(10.0)
vortex 0 0 1.0 1.0 1000.0 1000.0 RandomPlayout(10.0)
witnessprotected 0 0 0.0 0.0 511.8 496.2 RandomPlayout(10.0)

TABLE XX: Performance of agents - randomly chosen games

Game Victory Scores mean Time step Parameters chosen by
the model

Competition Predicted Competition Predicted Competition Predicted
bomber 2 2 3.2 3.2 837.4 798.8 RandomPlayout(10.0)
camelRace 5 5 1.0 1.0 67.0 57.8 RandomPlayout(10.0)
chopper 5 5 18.8 19.6 880.8 912.0 RandomPlayout(10.0)
lasers -200 0 -400.0 0.0 714.0 1574.8 RandomPlayout(10.0)
mario -300 1 -598.2 5.6 783.2 536.6 RandomPlayout(10.0)
overload 5 5 17.2 17.0 241.2 211.8 RandomPlayout(10.0)
pong -197 5 -399.4 1.0 388.8 853.2 O-L UCT(0.6)
run 0 0 0.0 0.0 132.6 123.8 RandomPlayout(10.0)
surround 5 5 1.0 1.0 0.0 0.0 RandomPlayout(10.0)
thecitadel 5 3 6.0 4.4 13.8 864.8 RandomPlayout(10.0)

of them faster. Therefore, classification models improved the
game playing of the hyper-agent.

VII. FUTURE WORK

To test further the accuracy of the models, different ap-
proaches could be done:

• Use other features of the games, like the types of the
other avatars, whether they are shooting etc which can
be extended thanks to the information stored by the class
StoreToCSV.java.

• In this thesis, the parameters of the agents, the labels
of the models, were not predicted together, but indepen-
dently. An improvement would be to have more than one,
in the best case all, the parameters predicted to make
one sub-agent that can play the game with some specific
features.

• Some game generation has been done in the past, among
other also for the competition, where the participants, on
top of developing playing agents, had to submit good
game and rule generators. To test the accuracy of the
model, new games with new rules could be generated,
and the agent would be able to play more games and
its performance with the classification method included
would be tested.

REFERENCES

[1] P. K. Y. Yap, N. Burch, R. C. Holte, and J. Schaeffer, “Any-angle path
planning for computer games,” in Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2011.

[2] J. Lisowski, “Dynamic games methods in navigator decision support
system for safety navigation,” in Proceedings of the European safety
and reliability conference, vol. 2, pp. 1285–1292, 2005.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[4] X. Cui and H. Shi, “A*-based pathfinding in modern computer games,”
International Journal of Computer Science and Network Security,
vol. 11, no. 1, pp. 125–130, 2011.

[5] J. Schaeffer and H. J. Van den Herik, “Games, computers, and artificial
intelligence,” Artificial Intelligence, vol. 134, no. 1-2, pp. 1–7, 2002.

[6] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” AI magazine, vol. 26, no. 2, pp. 62–62, 2005.

[7] R. Tagiew, “General game management agent,” arXiv preprint
arXiv:0903.0353, 2009.

[8] G. Fong, “Adapting cots games for military simulation,” in Proceedings
of the 2004 ACM SIGGRAPH international conference on Virtual Reality
continuum and its applications in industry, pp. 269–272, 2004.

[9] N. Cummins, “Integrating e-commerce and games,” Personal and Ubiq-
uitous Computing, vol. 6, no. 5, pp. 362–370, 2002.

[10] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-
ikkulainen, T. Schaul, and T. Thompson, “General video game playing,”
Artificial and Computational Intelligence in Games, pp. 76–83, 2013.

[11] S. Risi and J. Togelius, “Increasing generality in machine learning
through procedural content generation,” Nature Machine Intelligence,
vol. 2, no. 8, pp. 428–436, 2020.

[12] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neuroevo-
lution approach to general atari game playing,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 6, no. 4, pp. 355–366,
2014.

[13] C. Crawford, Chris Crawford on interactive storytelling. New Riders,
2012.

[14] A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video



game playing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 94–101, IEEE, 2016.

[15] D. J. Soemers, C. F. Sironi, T. Schuster, and M. H. Winands, “En-
hancements for real-time monte-carlo tree search in general video game
playing,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 436–443, IEEE, 2016.

[16] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game ai: Competition, challenges and opportu-
nities,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[17] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a video game description language,” Artificial and
Computational Intelligence in Games, p. 85, 2013.

[18] “Single player plannning championship 2016.” http://gvgai.net/
championship.php?t=2016&t=sp.

[19] R. D. Gaina, A. Couëtoux, D. J. Soemers, M. H. Winands, T. Vodopivec,
F. Kirchgeßner, J. Liu, S. M. Lucas, and D. Perez-Liebana, “The 2016
two-player gvgai competition,” IEEE Transactions on Games, vol. 10,
no. 2, pp. 209–220, 2017.

[20] “scikit-learn: machine learning in python — scikit-learn 1.0.1 documen-
tation.” https://scikit-learn.org/stable/index.html.

[21] D. Morawiec, “sklearn-porter.” Transpile trained scikit-learn estimators
to C, Java, JavaScript and others.



APPENDIX

TABLE XXI: Sub-agents with different parameter values

No Selection c w Playout Pl1 Pl3 B1 B2 B3 B4 treeRγ mNSC B5 B6
1 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.6 3 true false
2 PH 0.0 1.0 NST 10.0 7.0 true true true true 0.6 3 true false
3 PH 0.9 1.0 NST 10.0 7.0 true true true true 0.6 3 true false
4 PH 0.6 0.5 NST 10.0 7.0 true true true true 0.6 3 true false
5 PH 0.6 1.0 MAST 10.0 null true true true true 0.6 3 true false
6 PH 0.6 1.0 Random 10.0 null true true true true 0.6 3 true false
7 PH 0.6 1.0 NST 10.0 9.0 true true true true 0.6 3 true false
8 PH 0.6 1.0 NST 10.0 7.0 false true true true 0.6 3 true false
9 PH 0.6 1.0 NST 10.0 7.0 true false true true 0.6 3 true false
10 PH 0.6 1.0 NST 10.0 7.0 true true false true 0.6 3 true false
11 PH 0.6 1.0 NST 10.0 7.0 true true true false 0.6 3 true false
12 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.3 3 true false
13 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.6 5 true false
14 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.6 9 true false
15 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.6 3 false false
16 PH 0.6 1.0 NST 10.0 7.0 true true true true 0.6 3 true true
17 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.6 3 true false
18 O-L UCT 0.6 null Random 10.0 null true true true true 0.6 3 true false
19 O-L UCT 0.6 null Random 6.0 null true true true true 0.6 3 true false
20 O-L UCT 0.6 null Random 6.0 null true false true true 0.6 3 true false
21 O-L UCT 0.9 null Random 10.0 null true false true true 0.6 3 true false
22 O-L UCT 0.6 null MAST 10.0 null true true true true 0.6 3 true false
23 O-L UCT 0.6 null MAST 10.0 null true false true true 0.6 3 false false
24 PH 0.6 0.1 MAST 10.0 null false true true true 0.6 3 true false
25 PH 0.6 0.1 MAST 10.0 null true false true true 0.6 3 true false
26 PH 0.6 0.1 MAST 10.0 null true true false true 0.6 3 true false
27 PH 0.6 0.1 MAST 10.0 null true true true false 0.6 3 true false
28 PH 0.6 0.1 MAST 10.0 null true true true true 0.6 3 false false
29 PH 0.6 0.1 MAST 10.0 null true true true true 0.6 3 true true
30 PH 0.6 0.1 MAST 10.0 null true true true true 0.6 5 true false
31 PH 0.6 0.1 MAST 10.0 null true true true true 0.6 9 true false
32 PH 0.6 0.1 MAST 10.0 null true true true true 0.3 3 true false
33 PH 0.6 0.1 MAST 10.0 null true true true true 0.8 3 true false
34 PH 0.6 0.1 MAST 7.0 null false true true true 0.6 3 true false
35 PH 0.6 0.1 MAST 7.0 null true false true true 0.6 3 true false
36 PH 0.6 0.1 MAST 7.0 null true true false true 0.6 3 true false
37 PH 0.6 0.1 MAST 7.0 null true true true false 0.6 3 true false
38 PH 0.6 0.1 MAST 7.0 null true true true true 0.6 3 false false
39 PH 0.6 0.1 MAST 7.0 null true true true true 0.6 3 true true
40 PH 0.6 0.1 MAST 7.0 null true true true true 0.6 5 true false
41 PH 0.6 0.1 MAST 7.0 null true true true true 0.6 9 true false
42 PH 0.6 0.1 MAST 7.0 null true true true true 0.3 3 true false
43 PH 0.6 0.1 MAST 7.0 null true true true true 0.8 3 true false
44 O-L UCT 0.6 null MAST 7.0 null false true true true 0.6 3 true false
45 O-L UCT 0.6 null MAST 7.0 null true false true true 0.6 3 true false
46 O-L UCT 0.6 null MAST 7.0 null true true false true 0.6 3 true false
47 O-L UCT 0.6 null MAST 7.0 null true true true false 0.6 3 true false
48 O-L UCT 0.6 null MAST 7.0 null true true true true 0.6 3 false false

Continued on next page



TABLE XXI – continued from previous page
No Selection c w Playout Pl1 Pl4 B1 B2 B3 B4 treeRγ mNSC B5 B6
49 O-L UCT 0.6 null MAST 7.0 null true true true true 0.6 3 true true
50 O-L UCT 0.6 null MAST 7.0 null true true true true 0.6 5 true false
51 O-L UCT 0.6 null MAST 7.0 null true true true true 0.6 9 true false
52 O-L UCT 0.6 null MAST 7.0 null true true true true 0.3 3 true false
53 O-L UCT 0.6 null MAST 7.0 null true true true true 0.8 3 true false
54 O-L UCT 0.6 null MAST 10.0 null false true true true 0.6 3 true false
55 O-L UCT 0.6 null MAST 10.0 null true false true true 0.6 3 true false
56 O-L UCT 0.6 null MAST 10.0 null true true false true 0.6 3 true false
57 O-L UCT 0.6 null MAST 10.0 null true true true false 0.6 3 true false
58 O-L UCT 0.6 null MAST 10.0 null true true true true 0.6 3 false false
59 O-L UCT 0.6 null MAST 10.0 null true true true true 0.6 3 true true
60 O-L UCT 0.6 null MAST 10.0 null true true true true 0.6 5 true false
61 O-L UCT 0.6 null MAST 10.0 null true true true true 0.6 9 true false
62 O-L UCT 0.6 null MAST 10.0 null true true true true 0.3 3 true false
63 O-L UCT 0.6 null MAST 10.0 null true true true true 0.8 3 true false
64 O-L UCT 0.6 null NST 10.0 7.0 false true true true 0.6 3 true false
65 O-L UCT 0.6 null NST 10.0 7.0 true false true true 0.6 3 true false
66 O-L UCT 0.6 null NST 10.0 7.0 true true false true 0.6 3 true false
67 O-L UCT 0.6 null NST 10.0 7.0 true true true false 0.6 3 true false
68 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.6 3 false false
69 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.6 3 true true
70 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.6 5 true false
71 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.6 9 true false
72 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.3 3 true false
73 O-L UCT 0.6 null NST 10.0 7.0 true true true true 0.8 3 true false
74 O-L UCT 0.6 null NST 7 7.0 false true true true 0.6 3 true false
75 O-L UCT 0.6 null NST 7 7.0 true false true true 0.6 3 true false
76 O-L UCT 0.6 null NST 7 7.0 true true false true 0.6 3 true false
77 O-L UCT 0.6 null NST 7 7.0 true true true false 0.6 3 true false
78 O-L UCT 0.6 null NST 7 7.0 true true true true 0.6 3 false false
79 O-L UCT 0.6 null NST 7 7.0 true true true true 0.6 3 true true
80 O-L UCT 0.6 null NST 7 7.0 true true true true 0.6 5 true false
81 O-L UCT 0.6 null NST 7 7.0 true true true true 0.6 9 true false
82 O-L UCT 0.6 null NST 7 7.0 true true true true 0.3 3 true false
83 O-L UCT 0.6 null NST 7 7.0 true true true true 0.8 3 true false
84 PH 0.6 1.0 NST 7 7.0 false true true true 0.6 3 true false
85 PH 0.6 1.0 NST 7 7.0 true false true true 0.6 3 true false
86 PH 0.6 1.0 NST 7 7.0 true true false true 0.6 3 true false
87 PH 0.6 1.0 NST 7 7.0 true true true false 0.6 3 true false
88 PH 0.6 1.0 NST 7 7.0 true true true true 0.6 3 false false
89 PH 0.6 1.0 NST 7 7.0 true true true true 0.6 3 true true
90 PH 0.6 1.0 NST 7 7.0 true true true true 0.6 5 true false
91 PH 0.6 1.0 NST 7 7.0 true true true true 0.6 9 true false
92 PH 0.6 1.0 NST 7 7.0 true true true true 0.3 3 true false
93 PH 0.6 1.0 NST 7 7.0 true true true true 0.8 3 true false
94 PH 0.6 1.0 Random 10 null false true true true 0.6 3 true false
95 PH 0.6 1.0 Random 10 null true false true true 0.6 3 true false
96 PH 0.6 1.0 Random 10 null true true false true 0.6 3 true false
97 PH 0.6 1.0 Random 10 null true true true false 0.6 3 true false
98 PH 0.6 1.0 Random 10 null true true true true 0.6 3 false false
99 PH 0.6 1.0 Random 10 null true true true true 0.6 3 true true

Continued on next page



TABLE XXI – continued from previous page
No Selection c w Playout Pl1 Pl4 B1 B2 B3 B4 treeRγ mNSC B5 B6
100 PH 0.6 1.0 Random 10 null true true true true 0.6 5 true false
101 PH 0.6 1.0 Random 10 null true true true true 0.6 9 true false
102 PH 0.6 1.0 Random 10 null true true true true 0.3 3 true false
103 PH 0.6 1.0 Random 10 null true true true true 0.8 3 true false
104 PH 0.6 1.0 Random 7 null false true true true 0.6 3 true false
105 PH 0.6 1.0 Random 7 null true false true true 0.6 3 true false
106 PH 0.6 1.0 Random 7 null true true false true 0.6 3 true false
107 PH 0.6 1.0 Random 7 null true true true false 0.6 3 true false
108 PH 0.6 1.0 Random 7 null true true true true 0.6 3 false false
109 PH 0.6 1.0 Random 7 null true true true true 0.6 3 true true
110 PH 0.6 1.0 Random 7 null true true true true 0.6 5 true false
111 PH 0.6 1.0 Random 7 null true true true true 0.6 9 true false
112 PH 0.6 1.0 Random 7 null true true true true 0.3 3 true false
113 PH 0.6 1.0 Random 7 null true true true true 0.8 3 true false
114 O-L UCT 0.6 null Random 7 null false true true true 0.6 3 true false
115 O-L UCT 0.6 null Random 7 null true false true true 0.6 3 true false
116 O-L UCT 0.6 null Random 7 null true true false true 0.6 3 true false
117 O-L UCT 0.6 null Random 7 null true true true false 0.6 3 true false
118 O-L UCT 0.6 null Random 7 null true true true true 0.6 3 false false
119 O-L UCT 0.6 null Random 7 null true true true true 0.6 3 true true
120 O-L UCT 0.6 null Random 7 null true true true true 0.6 5 true false
121 O-L UCT 0.6 null Random 7 null true true true true 0.6 9 true false
122 O-L UCT 0.6 null Random 7 null true true true true 0.3 3 true false
123 O-L UCT 0.6 null Random 7 null true true true true 0.8 3 true false
124 O-L UCT 0.6 null Random 10 null false true true true 0.6 3 true false
125 O-L UCT 0.6 null Random 10 null true false true true 0.6 3 true false
126 O-L UCT 0.6 null Random 10 null true true false true 0.6 3 true false
127 O-L UCT 0.6 null Random 10 null true true true false 0.6 3 true false
128 O-LUCT 0.6 null Random 10 null true true true true 0.6 3 false false
129 O-L UCT 0.6 null Random 10 null true true true true 0.6 3 true true
130 O-L UCT 0.6 null Random 10 null true true true true 0.6 5 true false
131 O-L UCT 0.6 null Random 10 null true true true true 0.6 9 true false
132 O-L UCT 0.6 null Random 10 null true true true true 0.3 3 true false
133 O-L UCT 0.6 null Random 10 null true true true true 0.8 3 true false


